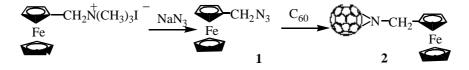
A New Approach to [60]Fullerene Ferrocenyl Derivative

Yuan Yin CHEN*, Xin Hong LI


College of Chemistry and Environmental Science, Wuhan University, Wuhan 430072

Abstract: A new approach to fullerene ferrocenyl derivative has been made. [60]Fullerene reacts with ferrocenylmethyl azide to give N-ferrocenylmethyl imino[60]fullerene in 42% yield.

Keywords: C₆₀, ferrocenyl, azide, synthesis.

It is well known that fullerene (C_{60}) possesses strong electron acceptor characters¹. It can accept reversibly up to six electrons²⁻³. Accordingly, many investigators try to link covalently different electron donors to C_{60} to design molecular electron devices ⁴⁻⁹. Ferrocene is a rich electron-donor, it is not surprise that fullerene ferrocenyl derivative plays a relevant role in the design of molecular electron devices. A series of fullerene ferrocenyl derivatives have been synthesized *via* the cycloaddition of azomethine ylides to C_{60} , ⁶⁻⁹. We wish to report a new approach to synthesize fullerene ferrocenyl derivative. Compound **2** was synthesized by reacting of fullerene with ferrocenylmethylazide **1** in toluene as shown in the **scheme**:

Scheme

Ferrocenylmethyl azide **1** was prepared according to literature¹⁰. A mixture of 54 mg of C₆₀ (0.075 mmol) and 18 mg (0.075 mmol) of ferrocenylmethyl azide **1** was stirred in 35 ml of dry toluene under argon at reflux temperature for 42 h. After removing the solvent under reduced pressure, the residue was passed through a silica column (petroleum ether/toluene, 2:1, V/V). 23 mg of target compound **2** was obtained in 42% yield. UV-Vis: λ_{max} (cyclohexane): 217.5, 235.5, 276, 266, 428 nm; IR v (cm⁻¹,KBr): 3100, 2918.1, 1429.2 (C₆₀), 1190.0 (C₆₀), 1103.2 (Fc), 999.1 (Fc), 571 (C₆₀), 522.7 (C₆₀). ¹HNMR (300MH_Z, CDCl₃/CS₂): δ 4.08-4.30 (m, 9H), 1.42 (s, 2H); Anal calcd for C₇₁H₁₁FeN: C 91.47, H 1.12, N 1.42; found: C 92.02, H 1.20, N 1.51; *m*/*z* (FAB): 720 (C₆₀); Mn (VPO): 882±50 (The calculated molecular weight of monoadduct is 933).

We only observed the peak of the pieces of C₆₀ but no molecular ion peak in the

Yuan Yin CHEN et al.

FAB-MS spectra. Maurizio P. *et al*⁶ reported the same result. We tried to use the VPO for determining the molecular weight of compound **2**. The result fitted the calculated value of monoadduct within the limit of error. Thus, VPO can be used as a complement tool to determine the molecular weight of fullerene derivative.

The TG analysis of compound **2** was carried out under nitrogen flow at 30 ml / min rate. It was observed that the weight increased 1% at 235°C. A possible explanation is that the nitrogen was inclused into the cage of C_{60} at high temperature. It losed 13% of weight from 265 to 275°C, and then losed other 62% of weight with increasing the temperature. So the conclusion can be made that the decomposition temperature of compound **2** is 265°C.

In summary, we have synthesized a new ferrocenyl derivative of C_{60} by a new approach and its structure has been confirmed by FT-IR, UV-VIS, FAB-MS, ¹HNMR spectra and VPO. Its themostability is moderate. Its electrochemical activities would be investigated on progress.

Acknowledgments

This work was financially supported by Fund for Ph. D. Programme from the State Education Commission, China.

References

- 1. R. C. Haddon, L. E. Brus, K Raghavachari. Chem Phys. Lett., 1986, 125, 459.
- 2. O. Xie, E. Perez-cordero, L Echegogen . J. Am. Chem. Soc., 1992, 114, 3978.
- 3. Y. Ohsawa, T. Saji. J. Chem. Soc. Chem. Commun., 1992, 781.
- 4. M. Hiroto, S. Masaharu, S. Takamasa, N. Naotoshi. Chem. Lett., 1999, 815.
- 5. S. G. Liu, L. H. Shu, J. Rivera, H. Y. Liu , J. M. Raimundo, J. Roncali, A. Gorgues, L. Echegoyen. J. Org. Chem., **1999**, 64, 4884.
- 6. P. Maurizio, M. Michele, G. Cristina, S. Gianfranco, S. Giancarlo, F. Giuseppe. *Tetrahedron*, **1996**, *52*, 5221.
- 7. M. Michele, K. Annike, S. Gianfranco, S. Giancaric, F. Giuseppe, P. Maurizio. *Chem. Commun.*, **1994**, 589.
- 8. F. Mamoru, I. Osamu, I. Hiroshi, Y. Koji, Y. Hiroko, S. Yoshiteru. Chem. Lett., 1999, 721.
- 9. I. Hiroshi, Y. Hiroko, O. Shinichiro, O. Kiminori, S. Yoshiteru. Chem. Commun., 1999, 1165.
- 10. D. E. Brublitz. J. Org. Chem., 1970, 23, 225.

Received 24 March 2000